
1

Unit 3.

Shell Programming

3.1 What is shell programming:

The shell provides you with an interface to the UNIX system. It gathers input from you and

executes programs based on that input.

When a program finishes executing, it displays that program's output.

A shell is an environment in which we can run our commands, programs, and shell scripts.

There are different flavors of shells, just as there are different flavors of operating systems.

Each flavor of shell has its own set of recognized commands and functions.

VI Editor - Introduction
There are many ways to edit files in Unix. Editing files using the screen-oriented text editor vi is

one of the best ways. This editor enables you to edit lines in context with other lines in the file.

An improved version of the vi editor which is called the VIM has also been made available

now. Here, VIM stands for Vi IMproved.

vi is generally considered the de facto standard in Unix editors because −

• It's usually available on all the flavors of Unix system.

• Its implementations are very similar across the board.

• It requires very few resources.

• It is more user-friendly than other editors such as the ed or the ex.

• You can use the vi editor to edit an existing file or to create a new file from scratch. You

can also use this editor to just read a text file.

o vi stands for Vim Improved.

o Vi uses number of internal commands to navigate to any point in a text file and edit text

there.

o It also allows us to copy and move the text within the file and also from one file to

another.

o We can use internal commands for editing work.

o It makes complete use of keyboard where practically every key has a function.

o To create any vi file,

$ vi <some text or filename>

o If file doesn’t exist, vi provides us a full screen with the filename shown at the bottom

with the qualifier [New File].

o The cursor is positioned at top and all remaining lines of the screen (Except last) show

a ~. We can’t take cursor there because they are nonexistent lines.

o The last line is reserved for commands that we can enter to act on the text. This line is

also used by the system to display the message.

2

General Command Information
As mentioned previously, vi uses letters as commands.

It is important to note that in general vi commands:

• are case sensitive - lowercase and uppercase command letters do different

things

• are not displayed on the screen when you type them

• Generally do not require a Return after you type the command.

You will see some commands which start with a colon (:). These commands are ex commands

which are used by the ex editor. Ex is the true editor which lies underneath vi -- in other words,

vi is the interface for the ex editor.

Limitations of VI editor
vi editor has weak environment s there are some disadvantages of it as below:

1. vi is case-sensitive.

2. It don't display error message when something is going wrong. At that moment, only

beep sound of speaker which informs you there is something wrong.

3. There is no online help available in vi.

4. It works on 3 different modes. Same keys can create different effect on each mode.

VI Editor - MODES
While working with the vi editor, we usually come across the following two modes −

• Command mode −

By default, any file open in vi is in command mode.

This is default mode of vi.

This mode enables you to perform administrative tasks such as saving the files,

executing the commands, moving the cursor, cutting (yanking) and pasting the lines

or words, as well as finding and replacing. In this mode, whatever you type is

interpreted as a command.

When user is in command mode and press Esc key then internal speaker of terminal

will beep.

This is a mode where we can pass commands to act on text, using keys of the keyboard.

Pressing a key doesn’t show it on screen but may perform a function like moving cursor

to the next line or deleting a line.

We can’t use Command Mode to enter or replace text.

• Insert mode −

This mode enables you to insert text into the file.

Everything that's typed in this mode is interpreted as input and placed in the file.

When you are in insert mode the same letters of the keyboard will type or edit text.

For text editing, vi uses 24 of the 25 lines that are normally available in a terminal.

3

To enter text, we must switch to Input Mode. First press key marked i and we are ready

to input text.

We can start inserting a few lines of text followed by [enter].

[Notes: vi always starts out in command mode.

 When you wish to move between the two modes, keep these things in mind.

 You can type i to enter the insert mode.

If you wish to leave insert mode and return to the command mode, hit the ESC key.

If you're not sure where you are, hit ESC a couple of times and that should put you back in

command mode.]

Table 7.1: Summary of vi Commands.

vi mode input mode command mode

ESC to end input

 - cursor
i - insert :q - quit

h j k l - cursor a - append :q! - quit no save

CTL-f - forward screen A - append at EOL :w - write

CTL-b - backward screen O - open line :wq - write and quit

G - end of file r - replace character :num goto line num

x - delete character R - overwrite /str - find str

dw - delete word :set all - vi settings

dd - delete line :r file - import file

yy - copy line in buffer

D - delete to EOL

p - paste/put buffer

u - undo last command

CTL-r - redo last undo (linux/vim)

. - repeat last editing command

n - find next occurrence of string

cw - change word

command - repeate command # times

4

• Last Line mode −

The last vi mode is known as vi last line mode.

 After text entry is complete, the cursor is positioned on the last character of the last

 line.

 This is known as Current Line and the character is stationed is the Current Cursor

 Position.

You can only get to last line mode from command mode, and you get into last line mode

by pressing the colon key, like this:

':'

After pressing this key, you'll see a colon character appear at the beginning of the last

line of your vi editor window, and your cursor will be moved to that position.

This indicates that vi is ready for you to type in a "last line command".

 If you want to remove something then can use [Backspace] key.

 If a word has been misspelled then use [Ctrl+w] to erase entire word.

 Press [Esc] key to revert to Command Mode.

 The text that you entered hasn’t been saved on disk yet. The entered text exists in some

 temporary storage called Buffer.

 To save the entered text, we must switch to the ex mode or Last Line Mode (3rd mode

 of VI).

 To invoke ex Mode from the Command Mode by entering a colon (:) which shows on

 last line. Press x and then [Enter].

 Now, the file is stored on the disk and vi returns shell prompt.

 To modify this file, again write vi <some text or filename> again.

Representation the 3 different modes of vi-editor.

5

Inserting or Adding Text

The following commands allow you to insert and add text. Each of these commands puts

the vi editor into insert mode; thus, the <Esc> key must be pressed to terminate the

entry of text and to put the vi editor back into command mode.

* i insert text before cursor, until <Esc> hit

 I insert text at beginning of current line, until <Esc> hit

* a append text after cursor, until <Esc> hit

 A append text to end of current line, until <Esc> hit

* o
open and put text in a new line below current line,

until <Esc> hit

* O
open and put text in a new line above current line,

until <Esc> hit

rch replace single character under cursor (no <Esc> needed)

 R
replace characters, starting with current cursor position,

until <Esc> hit

 s
Replaces the current character with the character you type.

Afterward, you are left in the insert mode.

 S
Deletes the line the cursor is on and replaces it with the new

text. After the new text is entered, vi remains in the insert mode.

Last-line mode command:
The purpose of these commands is to save a file, exit from a file with or without saving it and so

on. Sometimes it is also known as file handling commands.

Commands Significance
:wq or :x It saves a file, quiets from vi editor and return to shell prompt.

:q It quits from the editing mode, when no changes are made to file, and return to

shell prompt.

:w It saves a file and remain in editing mode, i.e. stay in vi editor

:q! It quits from the editing mode, without changes are made to file, and return to

shell prompt.

:w file1 It saves buffer content into file1.

:w! file1 As above but over write existing file.

:w>>file1 It appends current/open file contents into file file1.

:n1,n2w
file1

It writes n1 to n2 lines of open file into file file1.

:.w file1 It writes current line of open file into file file1. here (.) stands for current line of

open file.

:$w file1 It writes last line of open file into file file1. here ($) stands for last line of open

6

file.

:sh It temporary exit from vi and return to shell prompt. type <ctrl+d> to return

back to URL.

Ctrl-z It suspends current session and escape to unix shell. type fg at shell prompt to

return back to URL.

Command mode command:
VI editor supports two types of command mode commands:

• Cursor movement commands

The purpose of these commands is to perform navigate or to move cursor from one

place to another place in an editor. The VI editor has its own set of commands.

Commands Significance
H or (backspace) It moves cursor one-character left.

j It moves cursor one-line down.

k It moves cursor one-line up.

l OR (cursor) It moves cursor one-character right.

[return] It moves cursor to the beginning of the next line.

$ It moves cursor last column/character (or end of line) on the current

lines.

0(zero) or | or ^ It moves cursor first column/character (or end of line) on the current

lines.

w It moves cursor forward to the beginning of the next word or

punctuation mark.

b It moves cursor to the beginning of the previous word or punctuation

mark.

e It moves cursor forward to end of next word or punctuation mark.

G It moves cursor to the begging of last line in a file.

 example :

Movement

h, j, k, l

left, down, up, right

$

To the end of the line

^

To the beginning of the line

G

To the end of the file

:1

To the beginning of the file

:47

To line 47

• page scroll commands

Sometimes a user wish to move from one page to another page in forward or backward

direction then scrolling command is used.

Commands Significance

7

Ctrl-f It scrolls full page forward.

Ctrl-b It scrolls full page backward.

Ctrl-d It scrolls half page forward.

Ctrl-u It scrolls half page backward.

Ctrl-l It redraw a screen.

example:
5ctrl-f :it scrolls 5-full pages forward.
5ctrl-b :it scrolls 5-full pages backward.

2ctrl-d :it scrolls 2-half pages or 1 page forward

VI Editor - OPERATORS
A user can operates various tasks like delete, copy, paste, and search and replace a text.

Operator is a single letter command that performs an action on the text described by the

object.

The operators (to be described below) are:

1. d deletion operator

2. c change operator

3. y yank (copy) operator

4. ! filter operator

Editing Commands:

A user can use above operators with commands to perform editing operations in a file that is

opened in an editor.

To edit the file, you need to be in the insert mode.

Command & Description

X:Deletes the character under the cursor location

X:Deletes the character before the cursor location

J: it joins current line with next line.

Dw: Deletes word from the current cursor location .

d^: Deletes from the current cursor position to the beginning of the line

D4g or 4dG: it deletes character from cursor position to 4th line.

dfch : it deletes character from cursor position to 1st occurrences of character 'ch'.

d/str: it delete characters from cursor position to 1st occurrences to string 'str' in

forward direction.

8

D?str: it delete characters from cursor position to 1st occurrences to string 'str' in

backward direction.

D or d$: Deletes character from the cursor position to the end of the current line

Dd: Deletes the line the cursor on current line.

Cc: Removes the contents of the line, leaving you in insert mode.

Cw: Changes the word the cursor is on from the cursor to the lowercase w end of the

word.

c$ or C: it changes the character from the cursor position to the end of the current

line

c4g or 4cG: it changes character from cursor position to 4th line.

r: Replaces the character under the cursor. vi returns to the command mode after the

replacement is entered.

R: Overwrites multiple characters beginning with the character currently under the

cursor. You must use Esc to stop the overwriting.

S: Replaces the current character with the character you type. Afterward, you are left in

the insert mode.

S: Deletes the line the cursor is on and replaces it with the new text. After the new text

is entered, vi remains in the insert mode.

Yy oy Y: Copies the current line.

Yw: Copies the current word from the character the lowercase w cursor is on, until

the end of the word.

y$: it yanks character from cursor position to end of line.

Y4G or 4Gy: it copy character from cursor position to 4th line.

Yfch: it yanks cursor position to 1st occurrences of character 'ch' in forward direction.

y/str: it yanks from cursor position to 1st occurrences to string 'str' in reverse

direction.

9

y?str: it delete characters from cursor position to 1st occurrences to string 'str' in

forward direction.

P: Puts the copied text after the cursor.

P: Puts the yanked text before the cursor.

~ : it reverse the case of character under the cursor position.

. (dot): it repeats last ending instruction.

u: it undoes last ending instructions

U: it undoes all changes made in current line.

Ctrl-r : it redoes previous undo.

Search and replacing Commands:

Command & Description

/pat : It search pattern pat in forward direction.

?pat : It search pattern pat in backward direction.

n : it repeats search in same directions along with which previous search was made.

N: it repeats search in opposite directions along with which previous search was

made.

fch : it removes cursor forward to 1st occurrences of character 'ch' in current line.

Fch : it removes cursor backward to 1st occurrences of character 'ch' in current line.

tch : it moves cursor forward but before 1st occurrences of character 'ch' in current

line.

Tch : it moves cursor backward but before 1st occurrences of character 'ch' in current

line.

;(semi-colon) : it repeats the search in the same direction made with f,F,t or T

command.

, (comma) : : it repeats the search in the opposite direction made with f,F,t or T

command.

:n1,n2 s/s1/s2: it replace 1st occurrences of string or regular expression s1 with string

s2 in line n1 to n2.

:n1,n2 s/s1/s2/g: it replace all occurrences of string or regular expression s1 with

10

string s2 in line n1 to n2.

:s : it repeats the last substitution on the current line.

Handling multiple files:

VI uses last line mode to handle multiple files and buffers.

A user can open as many buffers as required and switch from one to other.

The commands are as below for multiple file handling.

Command & Description

: r fname : it reads(/insert) file fname below the current line.

:r !cmd : it reads(/insert) output of 'cmd' command below the current line.

:e fame: it stop editing current file, and edits the file fname.

:e !fname: it is similar to :e fname but after discarding chsnges made to current file.

:e! : it loads the last saved edition of current file.

Ctrl-^ or :e# : it returned most recently edited file.

:n : it edits next file.

:n! : it permits editing of next file without saving the current file.

:rew : it rewinds the file list to start editing first file.

:rew! : it permits editing to the 1st file in command line without saving the current

file.

:f : it displays name of the current file.

:args : it displays name of all files in the buffer, the name of the current file is

enclosed within square brackets.

:sp : it splits the existing window into 2 separate windows.

Ctrl-w/W : it cycles through window.

Customized VI Editor:

A user can customize environment of VI editor. For that last line mode commands are used.

Command & Description

:set ic/ :set ignorecase -Ignores the case when searching

:set noic/ :set noignorecase -it does notIgnores the case

when searching

11

:set ai/ :set autoindent -Sets auto indent

:set noai-Unsets autoindent

:set nu/ :set number-Displays lines with line numbers on the
left side

:set nonu/ :set nonumber-does not Displays lines with line
numbers on the left side

:set showmode -it display mode in which user working.

:set noshowmode -it does not display mode in which user
working:

:set aw/autowrite -it automatically writes buffer contents to
disk before switching to next file during multiple file handling.

:set noaw/noautowrite -it dont writes buffer contents to disk

before switching to next file during multiple file handling.

3.2 Environmental & user defined variables

Variable Names:

The name of a variable can contain only letters (a to z or A to Z), numbers (0 to 9) or the

underscore character (_). By convention, Unix shell variables will have their names in

UPPERCASE. It is case sensitive. you cannot use special characters.

Two types of variables in unix : User defined variables and system/environmental varisbles.

The following examples are valid variable names −

_ALI

TOKEN_A

VAR_1

VAR_2

Following are the examples of invalid variable names −

2_VAR

-VARIABLE

VAR1-VAR2

VAR_A!

The reason you cannot use other characters such as !, *,&,$ or - is that these characters have a

special meaning for the shell.

1. User defined variables: A variable defined by user known as user defined variables.

12

Defining Variables :Variables are defined as follows −

variable_name=variable_value/expression/command

For example −:

$myvar = 1234 #No space on either side of equal sign

By default any variable created in shell are of string type. so, the values are stored in ASCII

rather than binary.

variables created in shell are automatically removed as soon as shell is expired.

when shell reads the command line, it interprets any word preceded by $ as a variable and

replace the word by the value of the variable.

To display content , a user can use echo command:

$echo $myvar <enter>

ans: 1234

 $

[note: LINK Scanned documnet : variables]

Shell enables you to store any value you want in a variable. For example −

VAR1="Zara Ali"

VAR2=100

Accessing Values

To access the value stored in a variable, prefix its name with the dollar sign ($) −

For example, the following script will access the value of defined variable NAME and print it on

STDOUT −

#!/bin/sh

NAME="Zara Ali"

echo $NAME

The above script will produce the following value −

Zara Ali

Read-only Variables

Shell provides a way to mark variables as read-only by using the read-only command. After a

variable is marked read-only, its value cannot be changed.

For example, the following script generates an error while trying to change the value of NAME

#!/bin/sh

13

NAME="Zara Ali"

readonly NAME

NAME="Qadiri"

The above script will generate the following result −

/bin/sh: NAME: This variable is read only.

3.4 Shell's interpretation at prompt:
when user enters a command on command line shell perform some internal steps before the

command directs its execution to a utility or s program.

Following are the steps:

1. PARSING: in this stage, the shell divides the command line into words, if it is not quoted

or escaped. The shell uses system variable IFS (internal field separator) to delimiter the

value of word delimiter, which is space and tab.

When shell encounters 2 or more spaces or tabs in the command line then they are

replaced with a single space.

for example, a=10

$echo value of variable a=$a <enter> //multiple spaces

 $ echo value of variable a=$a //spaces are replaced.

2. Variable Evaluation: in this stage, the shell is looking for variable names.

for example, a=10

$echo value of variable a=$a <enter> //$a is consider as variable

 $ echo value of variable a=10 //value is assigned.

3. Command Substitution: Any Unix command enclosed within back quotes is executed by

the shell and its output is substituted as argument for another command into a

command line.

E.g.: echo "Today's date: 'date'" // date command is enclosed within back quote ' '

echo "Today's date : MON Feb 21 14:03:03 IST 2018"

// The output of date command is become an argument for echo command.

4. Redirection: in this stage, shell scans for the characters >,< and >> and open a file

associated with this characters in a particular mode.

e.g.: wc <f1 here, shell opens a file instead of command and display number of lines,

words and character in file f1.

parsing

variable evaluation

Command Substitution

14

5. Wild-card interpretation: A number of characters are interpreted by the Unix shell

before any other action takes place.

These characters are known as wildcard characters.

Usually these characters are used in place of filenames or directory names.

 * An asterisk matches any number of characters in a filename, including none.

 ? The question mark matches any single character.

 [] Brackets enclose a set of characters, any one of which may match a single character at

 that position.

 - A hyphen used within [] denotes a range of characters.

 ~ A tilde at the beginning of a word expands to the name of your home directory. If you

 append another user's login name to the character, it refers to that user's home

 directory.

Here are some examples:

1. cat c* displays any file whose name begins with c including the file c, if it exists.

2. ls *.c lists all files that have a .c extension.

3. cp ../rmt?. copies every file in the parent directory that is four characters long and

begins with rmt to the working directory. (The names will remain the same.)

4. ls rmt[34567] lists every file that begins with rmt and has a 3, 4, 5, 6, or 7 at the end.

5. ls rmt[3-7] does exactly the same thing as the previous example.

6. ls ~ lists your home directory.

7. ls ~hessen lists the home directory of the guy1 with the user id hessen.

6. PATH evaluation: finally, it examine the system variable PATH to search a command into

the sequence of directories stored in it. If it is found then load an executable of

command into memory and then execute it otherwise it sows error message on

standard output.

3.5 Arithmetic expression evaluation

1. expr : this command has 2 functions : it performs arithmetic operations on integer and

string manipulation on strings.

Syntax: expr [expression]

 expr prints the value of EXPRESSION to standard output. A blank line below separates

 increasing precedence groups.

EXPRESSION may be:

ARG1 | ARG2 ARG1 if it is neither null nor 0, otherwise ARG2.

$x=3;y=5

$expr $x\|$y ans: 3

ARG1 & ARG2 ARG1 if neither argument is null or 0, otherwise 0.

ARG1 < ARG2 ARG1 is less than ARG2.

ARG1 <= ARG2 ARG1 is less than or equal to ARG2.

ARG1 = ARG2 ARG1 is equal to ARG2.

ARG1 != ARG2 ARG1 is unequal to ARG2.

ARG1 >= ARG2 ARG1 is greater than or equal to ARG2.

ARG1 > ARG2 ARG1 is greater than ARG2.

15

$x=3;y=5

$expr $x\>$y ans: 0

ARG1 + ARG2 arithmetic sum of ARG1 and ARG2.

$x=3;y=5

$expr $x + $y ans: 8

ARG1 - ARG2 arithmetic difference of ARG1 and ARG2.

$x=3;y=5

$expr $x - $y ans: -2

ARG1 * ARG2 arithmetic product of ARG1 and ARG2.

$x=3;y=5

$expr $x*$y ans: 15

ARG1 / ARG2 arithmetic quotient of ARG1 divided by ARG2.

$x=3;y=5

$expr -5/2 ans: -2

ARG1 % ARG2 arithmetic remainder of ARG1 divided by ARG2.

$x=3;y=5

$expr -3%5 ans: 3

Or

$x=3;y=5

$expr 3%-5 ans: 5

STRING : REGEXP anchored pattern match of regular expression REGEXP in STRING.

match STRING REGEXP same as STRING : REGEXP.

substr STRING POSLENGTH substring of STRING, POS counted from 1.

index STRING CHARS index in STRING where any CHARS is found, or 0.

length STRING length of STRING.

+ TOKEN interpret TOKEN as a string, even if it is a keyword like 'match' or an operator

like '/'.

(EXPRESSION) value of EXPRESSION.

String manipulation Expression

Length STRING Return the length of the string

Substr STRING POS LEN It returns LEN-characters of STRING from POS position.

Imdex STRING CHARS It returns the index of CHARS if found in a string otherwise 0.

Example:

$ expr length "TYBCA" ans :5

$ expr substr "TYBCA" 3 2 ans:BCA

$ expr substr "TYBCAmkics" 0 6 // display nothing

$ expr substr "TYBCAmkics" 7 12 ans:kics

$ expr substr "TYBCAmkics" -1 6 // display nothing

$ expr index "TYBCAmkics" A ans:5

16

2. bc command: IT stands for basic calculator.

SYNTAX :bc [-options] [file ...] OPTIONS

-h, --help :Print the usage and exit.

-i, --interactive: Force interactive mode.

-l, --mathlib: Define the standard math library.

-w, --warn: Give warnings for extensions to POSIX bc.

-s, --standard: Process exactly the POSIX bc language.

-q, --quiet: Do not print the normal GNU bc welcome.

-v, --version: Print the version number and copyright and quit.

It allows to perform various tasks.

� Arithmetic calculations on integers as well as on real numbers.

� conversion of numbers from one base to another.(i.e. decimal to binary

and so on.)

� calculate square roots, logarithms and trigonometric calculus such as sin,

cos etc.

 bc commands work on modes [1] interactive mode [2] command-line mode.

[1] Interactive mode : when you invoke bc without any option or argument, it display some

header lines and cursor keeps on blinking and nothing seems to happen. this is the interactive

mode of bc command.

$bc <enter>

#----------display some header lines---------

12 + 5 <enter>

17

<ctrl+d> or quit or halt

$

• bc uses four special variables : scale, ibase, obase and last.

I. scale:

� By default, bc performs integer division so that result will be integer, the

fractional part of the result is truncated.

� To show a fraction part, a user has to set a special variable called scale.

scale=2 <enter>

17/7 <enetr>\

2.42

II. ibase (input base) :

� bc is quit useful in converting numbers from one base to another, set ibase

before you provide the number.

ibase=2 <enter> #default input and output base is 10(decimal)

101 <enter> #input is binary number

5 #output is in decimal base

17

III. obase (output) :

� it defines conversion base of output.

obase=2 <enter> #now output base is binary

5 <enter> #input base is decimal

 101 #binary of decimal

IV. last :

� it contains value of last printed number.

4+5 <enter>

9

last <enter>

9

• bc also supports in-built functions like sqrt, cosine, sine, tangent, exponent etc.

• To use these function in bc, a user has to pre-load a math library using –l option. i.e. bc -l.

• This library has default scale to 20. table shows the list of functions:

 Table : math function

Function Meaning

s(x) it calculates sine of x, where x is in radian.

c(x) it calculates cosine of x, where x is in radian.

a(x) it calculates arctangent of x, where x is in radian.

l(x) it calculates natural logarithm of x.

e(x) it calculates e raise to x, where e=2.718281.

sqrt(x) it calculates square root of x.

$bc -l

sqrt(4)

2

sqrt(11)

3

e(l)

2.71828182845904523536

scale=2

sqrt(11)

3.31

• option used with bc command are as follow:

 (i) -h : it display usage and exit from the bc.

 (ii) -l : it defines standard math library functions.

 (iii) -q : it suppresses initial messages i.e. header information that is displayed during

 interactive mode.

 [2] command line mode : A user can also execute bc command at command-line.

 in this mode, argument file contains numbers or expressions. for example, consider an input file

is as follow:

$ cat num

s(45*3.14/180) //convert into degree

18

scale=2

4/3

sqrt(5)

e(l)

1.5+4

quit

$ bc -lq num

.70682518110536592374

1.33

2.33

2.71

5.5

$

� Here, num file contain expression and functions.

� if you apply a command at prompt, be executes commands line-by-line and display its

output on a screen.

� last statement quit is used to exit from bc.

� A user can assign output of bc command to another variable like this:

 $ a=`echo "scale=2;5/3"|bc`

 $ echo $a //ans:1.66

� A user can convert decimal number into octal at command line as follow:

 $echo "obase=8;12" | bc

 14 #converts to octal value

 $

Note: in merged notes ‘be’ is written in place of bc,pls check it

3. factor : It is math related command. [link : facor(bharat)]

• Works in interactive or command line mode.

SYNTAX: Factor [NUMBER(S)]

• If positive number given as input, less than 2^46,it will factorize the number and display

prime factors.

• Use <ctrl+d> to come out of interactive mode

• If no NUMBER is specified on command line, “factor” reads numbers from standard

input delimited by space, tabs or new line.

e.g.: $ factor
12 # takes std. input,until <ctrl+d>

12: 2 2 3

35

35: 5 7

19

42

42: 2 3 7

100

100: 2 2 5 5

13 10 # Takes 2 inputs at a time

13: 13

10: 2 5

$ factor 12 10 9 //factor command works on command line like this

12: 2 2 3

10: 2 5

9: 3 3

4. units:

• Converts quantities expressed in one scale to its equivalents in other scale.

Syntax: units[FROM-UNIT[TO-UNIT]]

• In absence of from unit and to unit, the program will use interactive mode.

• “units” command will not work in bash shell, as:

$ units

• -bash: units: command not found.

• Example:

$ units

you have:10 meter # at you have prompt, give input

you want:feet # at you want prompt gives wanting unit

*32.808399 #output shown in interactive mode

/0.03048

you have: # after output input prompt again will come

first line of output: 10 meters equals to 32.8 feet

second line of output: 1 foot equals to 0.03 decameter(10 meter)

� (ctrl+d) is used to quit from interactive mode of units command.

� Here both units are given as:

$ units 10meters feet

*32.808399

/0.03048

$

� if only one unit given with command then ,definition of the given unit will be

displayed on the output screen.

3.5 Control Structure:

control structure alters the flow of execution of shell script. it supports 2 ways of control

structure.

20

1. Decision making &

2. Loop control

1. Decision making : It contains 2 decision making statements.

1.1. If statement

If else statements are useful decision-making statements which can be used to select an

option from a given set of options.

Unix Shell supports following forms of if…else statement −

• if-then-fi statement

• if-then-else-fi statement

• if-then-elif-else-fi statement

Syntax : If control-command

 then

 statements

 fi

here if,then and fi are keywords.

example :

#script name :sh1

echo -e "Enter name of first file :\c"

read fname1

echo -e "Enter name of second file :\c"

read fname2

if cmp -s $fname1 $fname2

then echo "file contents are similar"

fi

Other forms,

Double decision:

if <condition>

then

 ### series of code if the condition is satisfied

else

 ### series of code if the condition is not satisfied

fi

example :

#script name :sh2

echo -e "Enter name of first file :\c"

read fname1

echo -e "Enter name of second file :\c"

read fname2

21

if cmp -s $fname1 $fname2

then

echo "file contents are similar"

else

echo "file contents are not similar"

fi

Multiple if condition:

if <condition1>

then

 ### series of code for condition1

elif <condition2>

then

 ### series of code for condition2

else

 ### series of code if the condition is not satisfied

fi

1.2. case-esac statement:

You can use multiple if...elif statements to perform a multiway branch.

However, this is not always the best solution, especially when all of the branches depend on

the value of a single variable.

Unix Shell supports case...esac statement which handles exactly this situation, and it does so

more efficiently than repeated if...elif statements.

There is only one form of case...esac statement which has been described in detail here −

case...esac statement

The case...esac statement in the Unix shell is very similar to the switch...case statement we

have in other programming languages like C or C++ and PERL, etc.

Syntax of bash case statement.

case expression in

 label1)

 statements ;;

 label2)

 statements ;;

 ...

esac

Following are the key points of bash case statements:

• Case statement first expands the expression and tries to match it against each label.

• When a match is found all of the associated statements until the double semicolon (;;)

are executed.

22

• After the first match, case terminates with the exit status of the last command that was

executed.

• If there is no match, exit status of case is zero.

example:

echo "enter no."

read num

case $num in

 1) echo "one"

 ;;

 2) echo "Two"

 ;;

 ...

 9)echo "Nine"

 ;;

*) echo "please ,enter a number between 1 and 9"

;;

esac

2. Loop control structure : It contains 3 control structures.

2.1. while loop :To repeat a part of program fixed number of times then while loop is

used.

Syntax:

while command1 ; # this is loop1, the outer loop

do

 Statement(s) //to be executed if command1 is true

done

Example:

a=0

while ["$a" -le 10] # this is loop1

do

 echo $n

 n=`expr $n + 1`

 done

Ans: by this you can display 1 to 10

2.2. until loop : It is a complement loop of while.

The while loop is perfect for a situation where you need to execute a set of commands

while some condition is true. Sometimes you need to execute a set of commands until

a condition is true.

Syntax:

until command

do

 Statement(s) //to be executed until command is true

done

23

Here the Shell command is evaluated. If the resulting value is false, given statement(s) are

executed. If the command is true then no statement will be executed and the program jumps to

the next line after the done statement.

Example

Here is a simple example that uses the until loop to display the numbers zero to nine −

n=1

until [$n -gt 10]

do

 echo $n

 n=`expr $a + 1`

done

Answer:

Upon execution, you will receive the following result −

0

1

2

3

4

5

6

7

8

9

2.3. for loop : The for loop operates on lists of items. It repeats a set of commands for

every item in a list.

Syntax

for var/(control variables) in word1 word2 ... wordN

do

 Statement(s) //to be executed for every word.

done

Here var is the name of a variable and word1 to wordN are sequences of characters

separated by spaces (words). Each time the for loop executes, the value of the variable

var is set to the next word in the list of words, word1 to wordN.

Example

Here is a simple example that uses the for loop to span through the given list of

numbers −

for i in 0 1 2 3 4

do

 echo $i

done

Upon execution, you will receive the following result −

0

1

24

2

3

4

3. Un conditional jump Statements : Break & Continue.

3.1 break:

The break statement is used to terminate the execution of the entire loop, after completing

the execution of all of the lines of code up to the break statement. It then steps down to the

code following the end of the loop.

Syntax

The following break statement is used to come out of a loop −

break

The break command can also be used to exit from a nested loop using this format −

break n

Here n specifies the nth enclosing loop to the exit from.

Example

Here is a simple example which shows that loop terminates as soon as a becomes 5 −

a=0

while [$a -lt 10]

do

 echo $a

 if [$a -eq 5]

 then

 break

 fi

 a=`expr $a + 1`

done

3.2 Continue :

The continue statement is similar to the break command, except that it causes the current

iteration of the loop to exit, rather than the entire loop.

This statement is useful when an error has occurred but you want to try to execute the next

iteration of the loop.

Syntax

continue

Like with the break statement, an integer argument can be given to the continue command to

skip commands from nested loops.

continue n

Here n specifies the nth enclosing loop to continue from.

Example

The following loop makes use of the continue statement which returns from the continue

statement and starts processing the next statement −

25

NUMS="1 2 3 4 5 6 7"

for NUM in $NUMS

do

 Q=`expr $NUM % 2`

 if [$Q -eq 0]

 then

 echo "Number is an even number!!"

 continue

 fi

 echo "Found odd number"

done

Upon execution, you will receive the following result −

Found odd number

Number is an even number!!

Found odd number

Number is an even number!!

Found odd number

Number is an even number!!

Found odd number

Logical Operators
This operators are used to join conditions.

shell offers 3 types of logical operators.

1. -a (Logical AND) : used to join 2 or more conditions.

2. -0 (Logical OR) : also, used to join 2 or more conditions.

3. -! (Logical NOT) : negates the value of expression. i.e. : it makes non-zero to zero and vise-versa.

test Command
it is used to evaluate expression and returns either true or false exit status which is used by if

statement to make decision.

There are 3 major functionalities of test command.

1. compare 2 numbers

2. compare 2 strings or a single or null value

3. checks a file attributes

1. Numeric comparison: It performs comparison between 2 nos.

-eq - does value 1 equal value 2

-ge - is value 1 greater or equal to value 2

-gt - is value 1 greater than value 2

-le - is value 1 less than or equal to value 2

-lt - is value 1 less than value 2

-ne - does value 1 not equal value 2

Examples:

26

test 1 -eq 2 && echo "yes" || echo "no"

(displays "no" to the screen because 1 does not equal 2)

test 1 -ge 2 && echo "yes" || echo "no"

(displays "no" to the screen because 1 is not greater or equal to 2)

test 1 -gt 2 && echo "yes" || echo "no"

(displays "no" to the screen because 1 is not greater than 2)

test 1 -le 2 && echo "yes" || echo "no"

(displays "yes" to the screen because 1 is less than or equal to 2)

test 1 -lt 2 && echo "yes" || echo "no"

(displays "yes" to the screen because 1 is less than or equal to 2)

test 1 -ne 2 && echo "yes" || echo "no"

(displays "yes" to the screen because 1 does not equal 2)

2. String comparison:

If you are comparing elements that parse as strings you can use the following

comparison operators:

• = - does string 1 match string 2

• != - is string 1 different to string 2

• -n - is the string length greater than 0

• -z - is the string length 0

Examples:

test "string1" = "string2" && echo "yes" || echo "no"

(displays "no" to the screen because "string1" does not equal "string2")

test "string1" != "string2" && echo "yes" || echo "no"

27

(displays "yes" to the screen because "string1" does not equal "string2")

test -n "string1" && echo "yes" || echo "no"

(displays "yes" to the screen because "string1" has a string length greater than zero)

test -z "string1" && echo "yes" || echo "no"

(displays "no" to the screen because "string1" has a string length greater than zero)

3. checks a file attributes :

If you are comparing files you can use the following comparison operators:

• -ef - Do the files have the same device and inode numbers (are they the same file)

• -nt - the first file newer than the second file

• -ot - the first file older than the second file

• -b - The file exists and is block special

• -c - The file exists and is character special

• -d - The file exists and is a directory

• -e - The file exists

• -f - The file exists and is a regular file

• -g - The file exists and has the specified group number

• -G - The file exists and owner by the user's group

• -h - The file exists and is a symbolic link

• -k - The file exists and has its sticky bit set

• -L - The same as -h

• -O - The file exists you are the owner

• -p - The file exists and is a named pipe

• -r - The file exists and is readable

• -s - The file exists and has a size greater than zero

• -S - The file exists and is a socket

• -t - The file descriptor is opened on a terminal

• -u - The file exists and the set-user-id bit is set

• -w - The file exists and is writable

• -x - The file exists and is executable

Examples:

test /path/to/file1 -n /path/to/file2 && echo "yes"

(If file1 is newer than file2 then the word "yes" will be displayed)

28

test -e /path/to/file1 && echo "yes"

(if file1 exists the word "yes" will be displayed)

test -O /path/to/file1 && echo "yes"

(if you own file1 then the word "yes" is displayed")

Managing file links : ln

• Link means a single file having many aliases.

• Like pointers in any programming languages, links in UNIX are pointers pointing to a file or a

directory.

• Creating links is a kind of shortcuts to access a file.

• Links allow more than one file name to refer to the same file, elsewhere.

• When we create a file or dir, a system allocates a unique number to it known as inode number;

hence system defines any files by their inode-number.

• Directory contains a list of i-node numbers of files and other directory.

• A user can view inode number of any file or dir by ls-i as

$ ls –i f1<enter>

1733089 f1

$

• When we make a copy of a file, we are having 2 different files with different names and same

content. In this file occupies separate space on a disk.

29

• But when we make a link of a file, we are having a single file, different names and same

contents. In this no separate space is occupied on a disk.

• In case of copy a new file new i-node number is created. But in case of link the files have the

same i-node number.

Links have following advantages:

• If a file has 2 links and if one link is removed accidently then your file is save i.e. it just remove

the link not the content.

• One file is shared among several users instead of giving each user a separate copy of the same

file.

• The ln command is used to create multiple links of a file. The general form is:

Syntax: ln [option] filename link filename

• Unix system offers 2 types of link

1. Hard link

2. Soft link

1. HARD-LINK:

• Create a hard link to a file f1 by giving the command as follows:

$ ln f1 f1.lnk<enter>

$

• Verify links as:

$ ls –i f1 f1.lnk

1733089 f1 1733089 f1.lnk

$

• If we do changes in f1 then it will also be in f1.lnk

• f1 and f1.lnk are same files.

• They are known as hard link because they create a direct link to i-node.

• If we delete any one from f1 and f1.lnk using rm, we are actually deleting only one link.

• A file is strictly deleted from the file system only when it has no links.

• When we create a file it will have just one link.

• If we have multiple links to a file, the command rm will delete only a single link.

• In directories we consider 2 hard links:”..” (A link pointing to the parent directory) and “.” (A link

pointing to itself)

• The parent of root dir is the root dir itself.

30

2. SYMBOLIC LINK(SOFT LINK):

• Symbolic link allows you to give a file, another name, but does not link the file by i-node.

• We can create Symbolic link to the file using ln with –s option as follows:

$ ln -s a1 a1.lnk

• It display nothing means you created a symbolic link named a1.lnk that points to the file a1.

• If ls –i is used the 2 files have different i-nodes.

$ ls -i a1 a1.lnk

 309686 a1 309589 a1.lnk

• If you use ls –l ,you will see that the file a1.lnk is a symbolic link pointing to a1

The result shows that a symbolic link file a1.lnk will not use the permissions of input file a1.

• They always have the permission rwxrwxrwx.

• On the other hand permission of hard link is same as that of original file.

• Drawback of symbolic link is that if we remove source file, we lose the file containing the data.

• In this case, the link file points to a nonexistent file.

• So we call it dangling symbolic link.

DIFFERENCE BETWEEN HARD-LINK AND SOFT-LINK

• Symbolic links identify the file they point to. But with hard link, there is no easy way to

determine which files are linked to the same i-node.

• You can create hard-link files only when they are on the same file system; symbolic links not

have this restriction.

• We can create symbolic links between 2 directories, but not hard link.

• Symbolic link file have different i-node number, file size and file permission whereas hard link

file have same i-node number, file size and file permission.

different i-node

number in symbolic

link

same i-node

number in hard link

31

• A user can create a symbolic link to a file that does not exist. The same is not possible with hard-

links.

Find command
it searches files in the directory hierarchy.

 Syntax:

 Find [path-list] selection-criteria [action]

Path_list: it is one or more sub-directories separated by white space.

On omitting this, current directory will be taken as default path-list.

Selection-criteria: it is one or more operators as shown below.

selection criteria begins with hyphen.

we can join one or more operator using logical operator –a and –o.

1. A simple find command:

2. find with file or directory name:

3. Search for a file by the name abc in the current directory and its hierarchy

 $ find -name abc

4. Search a file with specific name.

32

5. Find Files Using Name in Current Directory

6. Find Files Using Name and Ignoring Case

Find all the files whose name is tecmint.txt and contains both capital and small letters

in /home directory.

find /home -iname tecmint.txt
./tecmint.txt

./Tecmint.txt

7. Find Directories Using Name

Find all directories whose name is Tecmint in / directory.

find / -type d -name Tecmint
/Tecmint

Operators used with find
Operator Significance

-name flname It selects file flname

-user uname It selects files owned by uname

-group gname It selects files owned by group user gname

-type ftype It selects files of type ftype. where ftype should be any of the

following:

f(regular file),d(directory file),l(link file),c(character file),b(block

file),p(FIFO file),s(socket file).

-type f It selects ordinary/regular files

-type d It selects directory files

33

Finding hidden directories

find -type d -name ".*"

-type l It selects linked files

-links n|-n|+n It selects file having n links(-n for less than n links and +n for

greater than n links)

inum n|-n|+n It selects file having i-node number n (-n for less than n number

and +n for greater than n number)

-size x|-x|+x It selects file if size equal to x blocks(-x for less than x blocks and +x

for greater than x blocks)

How to find files based on the size?
a. Finding files whose size is exactly 10M

find . -size 10M

b. Finding files larger than 10M size

find . -size +10M

c. Finding files smaller than 10M size

find . -size -10M

-atime x|-x|+x It selects file if accessed in x days

(-x for less than x days and +x for greater than x days)

 Print the files which are accessed within 1 day.

find . -atime -1

-amin x|-x|+x It selects file if accessed in x minutes

(-x for less than x minutes and +x for greater than x minutes)

Print the files which are accessed within 1 hour.

34

find . -amin -60

-mtime x|-x|+x It selects file if modified in x days

(-x for less than x days and +x for greater than x days)

 Find the files which are modified within 1 day.

find . -mtime -1

How to find the files which are modified 1 day back.

find . -not -mtime -1

-mmin x|-x|+x It selects file if modified in x minutes(-x for less than x minutes and +x for

greater than x minutes)

Find the files which are modified within 30 minutes.

find . -mmin -30

How to find the files which are modified 30 minutes back

find . -not -mmin -30

-newer flname It selects file if modified after flname

How to find the files which are modified after the modification of a
give file.

find -newer "sum.java"

This will display all the files which are modified after the file
"sum.java"

 Display the files which are accessed after the modification of a
give file.

find -anewer "sum.java"

Display the files which are changed after the modification of a give
file.

find -cnewer "sum.java"

-perm nnn It selects file if octal permission is nnn

How to find the files based on the file permissions?

find . -perm 777

This will display the files which have read, write, and execute
permissions. To know the permissions of files and directories use
the command "ls -l".

-maxdepth n It selects files upto n levels

Find Read Only Files Find all Read Only files.

find / -perm /u=r

Actions: actions performed with find command.

35

Action Significance

-exec cmd it executes unix command cmd followed by {} \;

Another examples are

 find . –name f1 –exec rm{}\;

 #; is necessary

find . –name f1 -type f –exec rm{}\;

-ok cmd similar to –exec, except that command is executed after user’s

confirmation

find . –name f1 –ok rm {}\;

36

-print it prints selected files on standard output(it is the default action)

Examples: you want to locate all files names file1 under current directory hierarchy, then

command is :

$find . –name f1 –print

./d1/d2/f1

./d1/f1

./f1

$

2)find . –name “*.sh” –print

3)$find . –mtime 5 –print

37

4) $find /user/b1 –name “f?” –print

8)$find . –maxdepth 1 –name f1 –print

 # search file named f1 in current directory only

9)find . –maxdepth 2 –name f1 –print

 # search file named f1 in current directory & its sub-directory only

 How to find the files whose name are not "sum.java"?

find -not -name "sum.java"

Evaluate command : eval

38

This command evaluates the command twice.

In the first pass, it ignores character followed by backslash(\) and make a substitution if any.

It executes command in 2nd pass only.

Let us consider an example:

x=5

y=x

eval echo \$$y

In this example during the 1st pass $ symbol after \ remains as it is and $y replaces by 'x'.

where as in 2nd pass $x replaced by 5 and then echo command print on screen.

Eval command is useful when a user wish to create a command line inside a variables.

It is useful to assign a value of a variable to another variable as follow:

$a="hello"

$apte=a

$eval $aptr = "world"

$echo $a

Executing a command stored in a variable

$ c="ls|more"

$ eval $c

1

11

1cd

201403152214.45

22

a

……..output of more ahead

3) Extracting the last positional parameter

$ set unix

$ eval echo \$$#

unix

4) using pipe stored in a variable and this variable is used for executing commands

$ x="|"

39

$ls $x wc

ls: |: No such file or directory

ls: wc: No such file or directory

$ eval ls $x wc

 79 79 395

5)$ ls f*

f1 f1234 f1copy f1h f1s f2 ft.sh

$ wc<f*

-bash: f*: ambiguous redirect

“ \<” this holds redirection which is to be executed first and executes it later with eval ,first

f* is executed which is to be executed to be second.

$ eval wc \< f*

 0 0 0 f1234

 1 1 5 f1copy

 1 1 5 f1h

 4 8 31 f1s

 4 8 31 f2

 8 40 154 ft.sh

 18 58 226 total

6)$x=5

$ y=x

$ y=4

$ echo $x

5

assigns value of one variable to other variable.

$ x=5

$ y=x

$ eval $y=4

$ echo $x

4

7) $ x=5

$ y=x

$ eval echo \$$y

5

User mask : umask
 umask, as the man page says, stands for User file creation mask which is used for determining

the default permission for a new file creation.

umask command is a shell built-in meaning it is an internal command.

There are three general classes of users:

• The user who owns the file ("User").

• Users belonging to the file's defined ownership group

("Group").

40

• Everyone else ("Other").

The three file permission attributes are read, write and execute.

These 3 are mapped to octal values as shown below:

 read - 4

 write - 2

 execute - 1

The umask command is used to set this mask, or to show you its current value.

The system default settings for both file and directory is rw-rw-rw (i.e. Octal 666) and

rwxrwxrwx (i.e. Octal 777) respectively.

In UNIX, the default file creation value is 666. 6 is 4+2(read + write).

Permission 666 means 6 for the User, 6 for the group and 6 for others.

Hence, a new file creation by default is meant to have read and write permission for User,

group and others.

This is the place where the umask comes into the picture.

It is a kind of filter wherein we can choose to retain or block some of the default permissions

from being applied on the file.

 Say, the umask value is 0022. umask is by default displayed in Octal form, and hence the first 0

in the umask value is the indication for octal value. So, the actual umask is 022. This value

together with the default file value(666) decides the final permission to be given to the file.

 Assume we create a file say "file1". The permissions given for this file will be the result coming

from the substraction of the umask from the default value :

 Default: 666

 umask : 022

Result : 644

 644 is the permission to be given on the file "file1". 644 means read and write for the

User(644), read only for the group(644) and others(644).

� What is umask?

 umask is a number which defines the default permissions which are not to be given on a

file. A umask of 022 means not to give the write permission to the group(022) and

others(022) by default.

2. How to find out the umask value?

41

 The option -S gives in more readable

 format.

 This means umask, at the

max, allows all permissions for the

user, read and execute alone for the

group and others.

Example:-

 If user creates a regular file then the default permission is calculated as below:

 Default Permission of regular file

 = system’s default setting for regular file – user mask

 = 666 – 002

 = 664

 So, Default Permission of regular file is assigned as 664(666 - 002) i.e. rw-rw-r--

 [6 = read + right, 4= read, 2= write, 7= read + write+ execute, 1= execute]

 If user creates a new directory then the default permission is calculated as below:

 Default Permission of directory

 = System’s default setting for directory – user mask

 = 777- 002

 = 775

� So, default permission to new directory is assigned as 755 (777 – 002) i.e. rwxrwxr-x

� You can change user mask settings as follows:

$umask 222

42

� If mask value 1 means remove 1 from system’s default directory and file permission.

� For directory, the default permission is 7 (i.e. 4+2+1), so we remove 1 then the result is

6 (4+2).

� The default for a file is 6 (4+2), so we remove 1 then result is 6 (4+2).

Octal dump : od
Most of the unix commands dont display invisible characters such as tab, space, new line etc.

od is a program for displaying ("dumping") data in various human-readable output formats.

The name is an acronym for "octal dump" since it defaults to printing in the octal data format.

It can also display output in a variety of other formats, including hexadecimal, decimal,

and ASCII.

It is useful for visualizing data that is not in a human-readable format, like the executable code

of a program.

od syntax
od [OPTION]... [FILE]...

So we see that output was produced in octal format. The first column in the output of od

represents the byte offset in file.
byte offset is the number of character that exists counting from the beginning of a line. ... The byte offset is the
count of bytes starting at zero.

43

Display contents of file in character format using -c option

Display contents of file in character in octal format using -b option

chown and chgrp

It is possible to change ownership and group name of file or directory.

The chown command changes ownership of files and directories in a unix file system.

Syntax : chown [option] new-user File(s)

Change modification & access time of file : Touch command

� This command is used to create the empty files in Unix system. The size of the file

created using touch command in UNIX will be 0 bytes. We will be able to add the

contents into the file using vi command.

� Ex: touch TestFile.txt

44

There are three time stamps associated with UNIX file:

• Last modification date and time.---mtime

• Last access date and time.---atime

• Last inode change date and time. ---ctime

[A timestamp is information associated with a file that identifies an important time in

the file's history.

A file can have multiple timestamps, and some of them can be "forged" by setting them

manually.

Internally, the operating system stores these times as time elapsed since an arbitrary

date called the epoch.]

� When user make changes in a file then modification time (mtime) is changed by the

kernel.

� When we read, write and execute a file then access time (atime) of file is changed by the

kernel.

� But ctime changes a few extra times. For example, it will change if you change the

owner or the permissions on the file.

 A user can display last modification time by: ls –l as:

$ ls -l y11

---x--x--x 1 neha neha 33 Jul 5 03:07 y11

 A user can display last access time & date by: ls –lu as:

 $ ls -lu y11

---x--x--x 1 neha neha 33 Jul 9 04:32 y11

 A user can display last inode change time & date by: ls –lc as:

 $ ls -lc y11

---x--x--x 1 neha neha 33 Jul 11 03:18 y11

• Touch command allows you to change modification and access time of file. The

general form of touch command is:

Syntax: Touch[option][expression]file(s)

• It updates the access and modification times of each file to the current time.

45

• When touch is used without option and expression, it changes both times of file

to current time. If file does not exist then it creates an empty file.

• Using touch command, you can update modification and access time of file f1 to

current time as follow:

$touch f1

The result shows that both the time of file f1 have been changed to the current

time.

• In the syntax of the touch command, an expression consists of the form

 [[cc]yy]MMDDhhmm[.ss].

• The meaning of each symbol is given in table:

Consider a file f2 as follow:

$ls-l f2 ; ls-lu f2

-rwxrwxrwx 1 bharat bharat 23 feb 28 13:37 f2

-rwxrwxrwx 1 bharat bharat 23 mar 11 16:31 f2

$

• You can change both modification and access time of file f2 using –t option as

follow:

$touch –t 201403152214.45 f2

$ls -l f2; ls -lu f2

-rwxrwxrwx 1 bharat bharat 23 mar 15 22:14 f2

 -rwxrwxrwx 1 bharat bharat 23 mar 15 22:14 f2

$

• The –a option is used to change only access time of file.

$ touch -a 03171414 f2

touch: warning: `touch 03171414' is obsolete(outdated); use `touch -t

201603171414.00'

$ ls -lu f2

-rw-rw-r-- 1 nidhi nidhi 0 Mar 17 14:14 f2

46

• Similarly, -m option is used to change only modification time of a file. Use –t

option with –m option you can suppress warning message.

$ touch -m -t 03171414 f2

$ ls -lu f2

-rw-rw-r-- 1 nidhi nidhi 0 Mar 17 14:14 f2

• Consider a file f2 , you can change modification time of file f2 to current time as :

$ touch –m f2

 If a user doesn’t want to create an empty file if file does not exist then –c option is

used.

$ touch –c nofile1

$ ls nofile1

Ls : nofile1: no such file or directory

$

Result shows that there is no nofile1 in a directory. It means that touch command does

not create an empty file even though a file does not exist.

Shell Meta characters
The meta characters are special characters which are interpreted by the shell.

The shell expand their meaning at a time of execution.

They are characterized as follow:

• Filename substitution

• Redirection

• Piping

• Conditional Execution

• Process execution

• Quoting & escaping

• Positional Parameters

• Variable & command execution

• Filename substitution : There are mainly 3 meta characters for file name substitution.

Item Description

* Matches any string, including the null string

? Matches any one character

[. . .] Matches any one of the characters enclosed in square brackets

1. Asterisk (*) : The asterisk is a wildcard that matches for zero or more of any character in

a filename.

Example

 1 $ ls * abc abc1 abc122 abc123 abc2 file1 file1.bak file2 file2.bak

none nonsense noone nothing nowhere one

2 $ ls *.bak file1.bak file2.bak 3 $ print a*c abc

 EXPLANATION

1. The asterisk expands to all of the files in the present working directory. All of the

files are passed to ls and displayed.

47

like $ls*

2. All files starting with zero or more characters and ending with .bak are matched

and listed.

3. All files starting with a , followed by zero or more characters, and ending in c are

matched and passed as arguments to the print command.

2. Question-mark(?):The question mark represents a single character in a filename.

When a filename contains one or more question marks, the shell performs filename

substitution by replacing the question mark with the character it matches in the

filename.

Example

 1 $ ls abc abc1 abc122 abc123 abc2 file1 file1.bak file2 file2.bak

none nonsense noone nothing nowhere one

2 $ ls a?c? abc1 abc2

3 $ ls ?? ?? not found

4 $ print abc??? abc122 abc123 5 $ print ?? ??

EXPLANATION

1. The files in the current directory are listed.

2. Filenames containing four characters are matched and listed if the filename

starts with an a , followed by a single character, followed by a c and a single

character.

3. Filenames containing exactly two characters are listed. There are none, so the

two question marks are treated as literal characters. Because there is no file in

the directory called ?? , the shell sends the message ?? not found .

4. Filenames containing six characters are matched and printed, starting

with abc and followed by exactly three of any character.

5. The ksh print function gets the two question marks as an argument. The shell

tries to match for any filenames with exactly two characters. There are no files in

the directory that contain exactly two characters. The shell treats the question

mark as a literal question mark if it cannot find a match. The two literal question

marks are passed as arguments to the print command.

3. Character class [..] : Brackets are used to match filenames containing one character

from a set or range of characters.

Example

48

 1 $ ls abc abc1 abc122 abc123 abc2 file1 file1.bak file2 file2.bak none nonsense none

 nothing nowhere one

2 $ ls abc[123] abc1 abc2

3 $ ls abc[13] abc1 abc2

4 $ ls [az][az][az] abc one

5 $ ls [!fz]??? abc1 abc2

6 $ ls abc12[2-3] abc122 abc123

EXPLANATION

1. All of the files in the present working directory are listed.

2. All four-character names are matched and listed if the filename starts with abc ,

followed by 1 , 2 , or 3 . Only one character from the set in the brackets is

matched for a filename.

3. All four-character filenames are matched and listed if the filename starts

with abc , and is followed by a number in the range from 1 to 3 .

4. All three-character filenames are matched and listed, if the filename contains

exactly three lowercase alphabetic characters.

5. All four-character files are listed if the first character is not a letter

between f and z , followed by three of any character (???).

6. Files are listed if the filenames contain abc12 , followed by 2 or 3 .

Character class uses 2 another meta characters ! (bang or exclamation)and -(hyphen) to

specify the range inside the classes e.g.: [1-4].

! used to reverse the matching criteria.

3.7 Redirection
• Redirection is a feature in unix such that when executing a command, you can change

the standard input/output devices.

• Most Unix system commands take input from your terminal and send the resulting

output back to your terminal.

• A command normally reads its input from the standard input, which happens to be your

terminal by default.

• Similarly, a command normally writes its output to standard output, which is again your

terminal by default.

• Every program you run from the shell opens three files:

o Standard input,

o standard output, and

o standard error.

• The files provide the primary means of communications between the programs, and

exist for as long as the process runs.

• With redirection, the above standard input/output can be changed.

Understanding I/O streams numbers: The Unix / Linux standard I/O streams with numbers:

Handle Name Description

49

0 stdin Standard input

1 stdout Standard output

2 stderr Standard error

1. Output Redirection:

The output from a command normally intended for standard output can be easily

diverted to a file instead.

This capability is known as output redirection.

If the notation > file is appended to any command that normally writes its output to

standard output, the output of that command will be written to file instead of your

terminal.

� e.g.: $ cat file1 > file2 [A user can create a duplicate file using output redirection]

� $ cat file1 > file2 #command using file descriptor for o/p

� $wc f1 >> f2 #appends o/p in f2.

� $ cat > newfile <enter> #output redirection creates a new file

This is new file <enter>

<ctrl+d>

$

� If you want to override the option and replace the current file

Contents with new output, you must use the redirection override operator,

greater than bar(>|).

 $ who >| exist_file

2. Input Redirection:

• Just as the output of a command can be redirected to a file, so can the input of a

command be redirected from a file.

• As the greater-than character > is used for output redirection,

50

• the less-than character < is used to redirect the input of a command.

• The commands that normally take their input from the standard input can have

their input redirected from a file in this manner.

• We can apply input from keyboard.

• For example, to count the number of lines in the file users generated above,

you can execute the command as follows −

$ wc -l users

2 users

$

• Upon execution, you will receive the following output.

• You can count the number of lines in the file by redirecting the standard input of

the wc command from the file users −

$ wc -l < users

2

$

 $ wc #takes std input until ctrl+d then give o/p

hiii

hello

(ctrl+d)

 2 2 11

note: here newline “\n” is also calculated.

 $ wc < f1.txt # take i/p from redirection.

 $cat f1 – f2 # 3 inputs f1 ,std i/p and f2

 Cat 0< file1 # reads file and display its content on screen

 Cat < file1 # same as cat 0<file1

 Cat file1 # not use input redirection

3. Error Redirection:

• Standard error (“stderr”) is like standard output and standard input, but it’s the

place where error messages go.

• Error re-direction is one of the very popular features of Unix/Linux.

• Frequent UNIX users will reckon that many commands give you massive amounts of

 errors.

• For instance, while searching for files, one typically gets permission denied errors.

These errors usually do not help the person searching for a particular file.

• While executing shell scripts, you often do NOT want error messages cluttering up

the normal program output.

Example 1

 $ myprogram 2 > errorsfile

Above we are executing a program names myprogram.

The file descriptor for standard error is 2.

Using "2>" we re-direct the error output to a file named "errorfile"

Thus, program output is not cluttered with errors.

51

example:

To write an output of command or error message into a same file, we must use

redirection substitution operator(>&)

$ ls –l file1 file2 file3 1> out_file 2>&1

Here, Error file is same as output file

$ cat file1 file2 file3 2>err_file 1>&2

Here output file is same as error file.

Redirection Commands
Following is a complete list of commands which you can use for redirection −

Sr.No. Command & Description

1 pgm > file

Output of pgm is redirected to file

2 pgm < file

Program pgm reads its input from file

3 pgm >> file

Output of pgm is appended to file

4 n > file

Output from stream with descriptor n redirected to file

5 n >> file

Output from stream with descriptor n appended to file

6 n >& m

52

Merges output from stream n with stream m

7 n <& m

Merges input from stream n with stream m

8 << tag

Standard input comes from here through next tag at the start of line

9 |

Takes output from one program, or process, and sends it to another

Piping Mechanism:
• Piping connects the output of one process to the input of a second.

• Piping uses the symbol "|".

• Pipe is used to combine two or more command and in this the output of one command

act as input to another command and this command output may act as input to next

command and so on.

• It can also be visualized as a temporary connection between two or more commands/

programs/ processes.

• The command line programs that do the further processing are referred to as filters.

• A filter is a process which is between two pipes.

• It simply changes the information coming down the pipe.

• Standard input for a process can be drawn from the script file itself.

• This uses the special redirection symbol "<<".

• The name which follows the redirection symbol is a tag for the end of the input.

• The Unix/Linux systems allow stdout of a command to be connected to stdin of another

command.

• Syntax :

command_1 | command_2 | command_3 | | command_N

Lets us consider a command as follow:

$cat f1|wc -c

123

$

here the o/p of cat command can be used as standard i/p of wc command.

So, the result shows the no. of characters in a file f1.

Advantages of pipe feature:

o There is no need to create intermediate temporary files to perform

complex task.

o As compare to redirection it is faster.

53

Conditional Execution:
• There are 2 conditional execution meta characters : && and ||.

• These meta characters can execute a command depending on the screen or failure of

the previous command.

• The shell provides meta-character && which executes the second command only if the

first command succeeds.

Syntax: COMMAND 1 && COMMAND 2 OR

 COMMAND 1 || COMMAND 2

e.g.:

$ cat y11

hhhhhhhhhuh+

ds

hello

linux

unix

$ grep neha1 y11 > y11.out && cat y11.out

Here we not get ‘neha1 pattern so, prompt will come

$ echo $? # $? Shows exit status of last command,1 ,so unsuccessful

$ grep 'hello' y11 > y11.out && cat y11.out

Hello #pattern found so command successful

$ echo $? #exit status 0 shows success of last command

� Shell provides meta character || which executes second command only if the

first command fails.

 Syntax : Command 1 || command 2

• $ grep 'the' y11 > y11.out || echo 'pattern not found'

 pattern not found

• $ grep 'hello' y11 > y11.out || echo 'pattern not found'

$ #output

• $ grep 'the' y11 || echo 'pattern not found'

 pattern not found

54

COMMAND GROUPING:
This feature allows shell to execute commands in different way on command line.

There are 4 different forms of this: Sequence command, Group of commands, Chain of

commands, Conditional commands.

 Sequence of commands:

sometimes a user wants to execute one or more commands all together at shell prompt

in one hit then process execution metacharacter (;) is used.

cmd 1;cmd 2;…...;cmd N

• $ date;cat y11;who am i

 Group of commands : (cmd 1;cmd 2;…...;cmd N)

To send output of more than one command into a single file then we have to make a

group of these commands.

 A meta-character parenthesis is used to make a group of commands.

Syntax:

(cmd 1;cmd 2;…...;cmd N)

55

Example:

• $ (date;cat y11;who am i) > y11.out

• $ cat y11.out

when shell gets parenthesis then it creates sub-shell.

So all commands in parenthesis will be executed in a sub-shell.

Sub-shell will be terminated as soon as closing parenthesis is encountered.

 Chain of commands: joining of commands by |(pipe)

 Conditional commands: joining of commands by && and || meta characters

H-W

read /dev/null file

read /dev/tty file

from bharat 7.10.1 and 7.10.2-PAGE NO: 118

/dev/null file

sometime, user want to ignore un-necessary output and error messages generated by

any command or programs, and do not want to save this output/error messages, then

/dev/null file is used.

When we redirect any output to this file, its size always remains zero.

For example:

$ cat f123

cat: f123: No such file or directory #error message

$ cat f123 > f1234 2> /dev/null

$ cat /dev/null

$ #prompt will come means nothing stored in /dev/null

• Quoting & escaping

Problem with rm a* or ls a*

To protect special characters (including wild cards) so the shell is not able to interpret

• ESCAPING-provides a \(backslash) before the wild card to remove(or turn off) its

special meaning

• QUOTING-enclosing the wild card, or even entire pattern, within quotes.

ex: ’chap*’ (i.e. pairs of quotes ".." and '..')

� $ cat > a* Hiii

56

� $ cat > a1

hello

� $ ls a*

a* a1

� $ cat a*

hiii

hello

� $ cat a*

hiii

� ESCAPING:

• rm chap* #doesn't remove chap1,chap2

• ls chap0\[1-3\] # chap0[1-3]

• rm chap0\[1-3\]

• $ echo \\ #gives \ in output, in absence of escaping takes std. I/p

 and display it in O/p.

$ echo \

> aaa

aaa

• Pass the -e parameter to enable interpretation of backslash escapes.

• Example:

$ echo -e "hello\nworld"

 hello

 world

• $ echo "hello\nworld"

 hello\nworld

• $ echo -e hello\nworld

 hellonworld

$ echo -e "hello\tworld"

 hello world

$ echo -e hello\\nworld

hello

world

� QUOTING:

• Escaping turns to be tedious when there are too many characters to protect. At that

time quoting will be used.

• Single quote protects all special characters

• Double quote also protect all except the $ and `(backquote)

• $ echo $SHELL

/bin/bash

• $ echo "$SHELL"

/bin/bash

• $ echo '$SHELL'

$SHELL

• echo ‘\’ #displays ans \

• echo “\” #creates file

• rm “my document.doc” # removes file my document.doc

• $echo 'the path searched is $PATH'

57

the path searched is $PATH

• $ echo "the path searched is $PATH"

Ans : the path searched is /usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/home/nidhi/bin

• double quote protect single quote and vice versa.

 Ex: echo “ ’hiiii’ ” or echo ‘ ”hello” ’

• Single quote protect all special characters

• Single quote protects system variables not double quote as:

$ echo '$SHELL'

$SHELL

• Single quote also protects ``(backquote)from command substitution.

• Variable & command execution
What is Substitution? - The shell performs substitution when it encounters an expression that

contains one or more special characters.

Variable Substitution :

Variable substitution enables the shell programmer to manipulate the value of a variable

based on its state.

Here is the following table for all the possible substitutions −

Sr.No. Form & Description

1 ${var}

Substitute the value of var.

2 ${var:-word}

If var is null or unset, word is substituted for var. The value of vardoes not change.

3 ${var:=word}

If var is null or unset, var is set to the value of word.

4 ${var:?message}

If var is null or unset, message is printed to standard error. This checks that variables

are set correctly.

5 ${var:+word}

If var is set, word is substituted for var. The value of var does not change.

COMMAND SUBSTITUTION:

Command substitution is the mechanism by which the shell performs a given set of commands

and then substitutes their output in the place of the commands.

Syntax

`command`

When performing the command substitution make sure that you use the backquote, not the

single quote character.

58

Example1:

Example2:

Command substitution is generally used to assign the output of a command to a variable.

Each of the following examples demonstrates the command substitution −

#!/bin/sh

DATE=`date`

echo "Date is $DATE"

USERS=`who | wc -l`

echo "Logged in user are $USERS"

UP=`date ; time`

echo "Uptime is $UP"

Upon execution, you will receive the following result −

Date is Thu Jul 2 03:59:57 MST 2009

Logged in user are 1

Uptime is Thu Jul 2 03:59:57 MST 2009

03:59:57 up 20 days, 14:03, 1 user, load avg: 0.13, 0.07, 0.15

3. $ echo "there are `ls|wc -w` files in the current directory"

Output: there are 60 files in the current directory

$ echo 'there are `ls|wc -w` files in the current directory'

#single quote protects special meaning of `(backquote)

Output: there are `ls|wc -w` files in the current directory

